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MATHENATICAL PROBIBIS OF 

MODELING  STOCHASTIC  NONLINEAR DYNAMIC SYSTEMS 

By Richard E. Mortensen 
TRW Systems Group 

ABSTRACT 

The purpose  of t h i s   r e p o r t  i s  to   introduce  the  engineer  t o  t h e   a r e a  

of s tochas t i c   d i f f e ren t i a l   equa t ions ,  and t o  make him aware  of some of 

the  mathematical   techniques  and  pi t fa l ls   in   this   area.   Topics   discussed 

include  continuous-time Markov processes ,   the  Fokker-Planck-Kolmogorov 
equa t ions ,   t he   I t o  and St ra tonovich   s tochas t ic   ca lcu l i ,  and t h e  problem 

of  modeling physical  systems. 
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MATHEMATICAL PROBLENS OF 

MODELING  STOCHASTIC NONLINElAR DYNAMIC SYSTEMS 

By Richard E. Mortensen* 
TRW Systems Group 

SUMMARY 

Certain mathematical  problems arise when one a t t empt s   t o  model a 

s tochas t i c  dynamic system  by means of a s e t  of ”_ nonlinear  . ord ina ry ,d i f -  

ferent ia l   equat ions  with  white   noise   exci ta t ion.   This   report   reviews 

the   bas i c   f ac t s   abou t  Markov processes and the  Fokker-Planck-Kolmogorov 

equations,  and t h e n   i l l u s t r a t e s   t h e   r e a s o n   f o r   t h e   d i f f i c u l t i e s  by an 

example. Two cur ren t  methods  of t r e a t i n g   s t o c h a s t i c   d i f f e r e n t i a l  equa- 

t i o n s ,   t h e   I t o  method and the  Stratonovich method, are defined and 
discussed. It i s  shown that   each method i s  c o n s i s t e n t   w i t h i n   i t s e l f ,  

tha t , i f   p roper ly   used ,   the  two  methods are   equivalent ,  and f i n a l l y  it 
i s  shown how t o   t r a n s l a t e   r e s u l t s  from one  method to   t he   o the r .  A 

philosophy  for  modeling  physical   systems  with  stochastic  differential  

equations i s  then  advocated. The purpose  of t h i s   r e p o r t  i s  to   in t roduce  

the   eng inee r   t o   t he  area of s tochas t i c   d i f f e ren t i a l   equa t ions ,  and make 

him aware of some of  the  mathematical  techniques and p i t f a l l s  in t h i s  

area. 

. . . . 

”- 
” 

Assistant Professor of Engineering,  University  of  California a t  
Los Angeles, Los Angeles, California.  (Consultant a t  TRW Systems  Group) 



I. INTRODUCTION 

This  paper  discusses  certain  mathematical  problems which arise in 

a t tempt ing   to  model a s tochas t ic  dynamic system by means of a s e t  of 

nonl inear   o rd inary   d i f fe ren t ia l   equa t ions   wi th   whi te   no ise   exc i ta t ion .  

This  approach  has  been  advocated in eng inee r ing   l i t e r a tu re   a t   va r ious  

t imes  over   the  past   ten  years .  The appeal of  t h i s  approach i s  t h a t  it 
i s  the  natural   extension  to  stochastic  systems  of  the  state  space  approach 

to   determinis t ic   systems which has met so much success  in  optimal  control 

theory.   Furthermore,   the  state  vector in such a model t u rns   ou t   t o  be 

a vector  Markov process ,   for  which  a substantial  mathematical  theory 

e x i s t s ;  in p a r t i c u l a r ,   t h e r e  i s  the  theory o f  the  Kolmogorov o r  Fokker- 

Planck p a r t i a l   d i f f e r e n t i a l   e q u a t i o n .   I n   a d d i t i o n ,  as one would expect 

of a s ta te   space  approach,   this  method i s  espec ia l ly   su i ted  t o  the  study 

of   the   t rans ien t   behavior  of the  stochastic  system,  with  steady-state,  o r  

more precisely,   s ta t ionary  behavior   obtained as a limiting case.  

The eng inee r ing   l i t e r a tu re   t ends   t o   g ive  one the  impression  that   the 

major d i f f i c u l t i e s   a s s o c i a t e d   w i t h   t h i s  approach are  computational. 

Although it i s  not   denied  that   the   computat ional   di f f icul t ies  are l a r g e ,  

it is the  main point  of t h i s  paper t o  show t h a t  a fundamental   difficulty 

may arise a t  an e a r l i e r  phase o f  the   ana lys i s ,  namely, when the  mathematical 

model i tself  i s  chosen. I n  a s e n s e ,   t h i s   d i f f i c u l t y  i s  not  computational 

but   conceptual ,   i .e .   there  may be a basic  divergence between the  implica- 

t i ons  of the  mathematical model  and t h e   f a c t s  of phys i ca l   r ea l i t y .  

T h i s   d i f f i c u l t y   a r i s e s  from the   p roper t ies  o f  t h e   h e u r i s t i c  

mathematical   idealization known as white  noise, o r  i t s  rigorous counter- 

p a r t  Brownian motion,  which i s  h e u r i s t i c a l l y   t h e  time i n t e g r a l  of  white 

noise.  The pecul iar   implicat ions of the  Brownian motion s tochas t i c  

process  puzzled  physicists  of an e a r l i e r   e r a ,   l e a d i n g  them t o  adopt a 

s tochast ic   process   with more "physicalf1  properties , the   Omstein-  

Uhlenbeck s tochast ic   process .  
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Mathematically,  the  trouble arises when one a t tempts   to   apply   the  

usual rules of d i f f e r e n t i a l  and in tegra l   ca lcu lus   to   func t ions   o f  time 

which are ac tua l ly  sample funct ions of a s tochast ic   process .  The r e s u l t  

has  been t h a t  something  of a controversy  has  appeared i n  recent  l i terature 

concerning two poss ib le  ways of  extending  ordipary  calculus   to   s tochast ic  

funct ions:   the   so-cal led  Stratonovich  calculus ,  in which the  usual  

ru les   cont inue   to   apply ,  and the   so-ca l led   I to   ca lcu lus ,  in which the  

rules are changed.  Although this   subject   has   been  discussed in seve ra l  

papers in the  las t  two o r   t h ree   yea r s ,  one gets  the  impression af ter  

reading some of these   papers   tha t   the   subjec t  i s  more bewi lder ing   to   the  

reader   than it was before  he  read  the  paper. 

The aim  of t h i s   r e p o r t  i s  t o  show, by means of examples  which we have 

attempted t o  choose t o  be as l u c i d  as poss ib l e ,   t he   r easons   fo r   t h i s  

divergence.  Further,  we w i l l  suggest  an  approach  to  the problems  of 

mathematical.modeling,  analysis, and computation  which seems t o  have 

t h e   q u a l i t i e s  of  being  both  mathematically  rigorous and cons is ten t   wi th  

phys ica l   rea l i ty .  

3 



11. SYMBOLS 

A 

dIF 
d t  

dx 

dw 

E 

h 

I n  

(If 

i 

J 

K1 

K2 
k 

m 

min 

p lan t  matrix 

acce lera t ion ,   f t / sec  

input  matrix 

covariance matrix 

I t o   d i f f e r e n t i a l  o f  F 

t ime   d i f f e ren t i a l  

d i f f e r e n t i a l  of x 

d i f f e r e n t i a l  of Wiener process 

expectat ion  operator  

base  of  natural   logarithms 

force  , pounds 

vector  valued  function 

matrix valued  function 

time-varying  coefficient 

a func t ion  

approximation t o  an I t o   i n t e g r a l  
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I t o   i n t e g r a l  

an  index 

a n   I t o   i n t e g r a l  

a constant 

Lipschi tz   constant  

an in t ege r  

mass, slugs 

minimum of 



n 

n 

n 

X 

Y 

I 

S 

t 

V 

V 
X 

V 
Y 

W 

X 

i 

XI 
X 

S 

Y 

an   i n t ege r  

hor izonta l  random force  component 

v e r t i c a l  random force  component 

random f o r c e   p a r a l l e l   t o   f l i g h t   p a t h  

random force   perpendicular   to   f l igh t   pa th  

a remainder 

p robab i l i t y   dens i ty   fo r  Aw 

probabi l i ty   dens i ty   func t ion  

t r a n s i t i o n   d e n s i t y  

d e n s i t y   f o r  Wiener process 

t r a n s i t i o n   d e n s i t y  of Wiener process 

dummy time  variable 

S t ra tonovich   in tegra l  

time 

magnitude  of  velocity  vector 

a random process 

transpose of v 

hor izonta l  component of ve loc i ty  

v e r t i c a l  component of ve loc i ty  

Wiener process 

s t a t e   vec to r  

t ime  derivative of x 

I t o   s o l u t i o n  

Stratonovich  solut ion 

a random process 

a random process 
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B 

A t  

6 

6 

5 

z 

f l i gh t   pa th   ang le  

a time increment 

increment  of Wiener process 

Dirac   de l ta   func t ion  

d m  var iab le  

d w  var iab le  

t r a n s i t i o n   d e n s i t y  for x 

t r a n s i t i o n   d e n s i t y  for x 

dummy time  variable 

I 

S 
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111. THE E N G I N m N G  MODEL 

Typical ly ,   the  dynamic equations  of  motion  that arise in the analysis 

of  engineering  systems are a-statement  of Newton's l a w  of  motion,  F = ma, 
possibly augmented by the   inc lus ion  of known f r i c t i o n a l  o r  d i s s ipa t ive  

forces .  Although the   d i rec t   appl ica t ion   of  F =ma y ie lds  second order 

d i f fe ren t ia l .   equa t ions ,  it i s  wel l  known t h a t  it i s  aiways  possible,  by 

adding more va r i ab le s ,   t o   conve r t   t hese   t o  a set of  coupled, first order ,  

and of ten   nonl inear ,   d i f fe ren t ia l   equa t ions   o f   the  form 

f (x ( t ) ,  t) 

Here x and f are  n-vectors. The vec tor   x (%)  i s  ca l l ed   t he   s t a t e   o f   t he  

system a t  time t .  

If now an engineer  wishes t o  modify  equation (1) t o  try t o   t a k e  

account  of random forces  in the  environment, a na tura l  way t o  proceed i s  

t o   w r i t e  

k ( t )  = f (x ( t ) ,  t) + G(x(t), t) v ( t )  

Here v ( t )  i s  an  m-vector,  representing  the random force a t  time t , and 

G@(t) ,  t) i s  an m matrix. It i s  allowed t o  be a funct ion o f  x and t 
to   t ake  into account   the   poss ib i l i ty   tha t   the   in f luence  of  the  noise  may 

depend on t h e   s t a t e  o f  the  system. 

The f u n c t i o n   v ( t )  i s  a random process ,   i .e .   for   each fixed t the  value 

of the   func t ion   v( t ) .  i s  a random variable .   In   the  absence of any  special  

knowledge about  the  nature  of  the random force ,  a commonly  made assumption 

i s  t h a t   v ( t )  i s  a so-called  Gaussian  white  noise random process.  This 

means tha t   for   each   f ixed  t the  random variable  has a Gaussian  dis t r ibut ion 

with  zero mean and inf ini te   var iance.   Furthermore,   for  any two times 

tl , t2, with tl # t2 , t he  two random variables   v( t , )  and v ( t 2 )   a r e  

completely  independent of each  other. 

Let E derlote expectat ion,  i.e. ave rag ing   ac ross   t he   s t a t i s t i ca l  ensemble. 

Let  a prime denote  the  transpose  of  a  vector o r  a matrix. S i n c e   v ( t )  i s  

7 



a column vec tor ,  v ' ( t )  i s  a row vector.  Mathematically,  white  noise i s  
character ized by the   condi t ions  

E{v(t)} E 0 ; ECV(tl) v l ( t2) )  = C(t,) 6(t1-t2) 

Here C(t,) i s  an m x m matrix, called  the  white  noise  covariance matrix, 

which expresses how the  components of   the  vector   v( t ,  ) are correlated 

among themselves. It i s  meaningful t o  speak  of  such co r re l a t ion  even 

though  each component has   in f in i te   var iance .  

I 

In   t he   ca se  of s ta t ionary   whi te   no ise ,   the  matrix C i s  constant ,  

independent  of  t ime.  Strictly,  it i s  only i n   t h i s   c a s e   t h a t   t h e  name 

"white"  can be just i f ied,   because  only in t h i s   c a s e  can one def ine a 

power spec t r a l   dens i ty   func t ion .   In   t h i s   ca se ,   t he  power spec t r a l   dens i ty  

funct ion i s  constant,  independent  of  frequency,  analogous  to  the  spectrum 

of   white   l ight .  

White noise  i s  much the  same kind  of  mathematical  pathology in t he  

theory of random processes   tha t   the   Di rac   de l ta   func t ion  i s  i n   t h e   t h e o r y  

of  deterministic  functions.  

A s  i s  by now well   appreciated,  s o  long as one does on ly  l i n e a r  opera- 

t i o n s  on a de l t a   func t ion ,  it i s  usua l ly   poss ib l e   t o   i n t e rp re t   t he   r e su l t  

in a meaningful way. However, one runs   i n to   t roub le   i n   t ry ing   t o  do non- 

l i n e a r   t h i n g s   t o  a de l ta   func t ion .  The square or the  logarithm  of a d e l t a  

funct ion i s  meaningless,   for example. 

A similar s i t u a t i o n   e x i s t s  i n  the  case  of  white  noise. If the 

d i f f e ren t i a l   equa t ion  (2)  i s  l i n e a r ,   i . e .  of the  form 

a ( t )  = A ( t )   x ( t )  + B ( t )   v ( t )  , ( 4 )  

then it tu rns   ou t   t ha t   t he re  i s  no d i f f i c u l t y   i n   i n t e r p r e t i n g  what i s  

meant by a so lu t ion   of   th i s   d i f fe ren t ia l   equa t ion .  A s  a funct ion o f  

t ,  x ( t )  t u r n s   o u t   t o  be a Gaussian random process,  and there  i s  no 

controversy  about how t o  compute the  mean and the  covariance of t h i s  



process. The process x ( t )  i s  much be t t e r  behaved than v ( t ) ,  e.g. none 

of   the components of x ( t )  has   in f in i te   var iance .  

However, when the   d i f f e ren t i a l   equa t ion  (2) i s  nonl inear ,  a problem 

of in t e rp re t a t ion   a r i s e s .  One might a t  f i rs t  th ink   tha t   the   nonl inear  

equation (2) i s  simply  meaningless, as in the  case  of  the  square  of a 
de l ta   func t ion .  However, t h i s  i s  not  the  case.  It turns o u t   t h a t   t h e r e  

are two d i s t i n c t ,  meaningful ways of   interpret ing  equat ion (2)  which 

appear i n  contemporary l i t e r a t u r e ,  and  which a re   ca l led   respec t ive ly  

t h e   I t o  and the  Stratonovich  interpretat ions.  

A s  s t a t e d  in the   In t roduc t ion ,   t h i s   r epor t  w i l l  exp lo re   t h i s   I t o -  

Stratonovich  divergence. Each in t e rp re t a t ion  w i l l  be explained, as we l l  

as the  reason  for  the  divergence. The  two in t e rp re t a t ions  w i l l  be shown 

t o  be equ iva len t ,   i n   t he   s ense   t ha t  it i s  possible   to   pass   f rom  the 

results  obtained  under one i n t e r p r e t a t i o n   t o   t h e   r e s u l t s   f o r   t h e   o t h e r  

i n t e rp re t a t ion   v i a  a transformation  formula.  Finally,  the  problems  of 

r e a l  world  modelling  and  computation w i l l  be  discussed. 

I V .  THE FOKKER-PLANCK EQUATION 

Before  discussing  this  divergence and the   sub t l e t i e s  of t h s   s tochas t i c  

calculus,  perhaps it w i l l  be we l l   t o  review the  area  of   the   theory in which 

there  i s  no controversy.  For  ease  of  exposition,  henceforth we w i l l  con- 

sider  only  scalar-valued random processes,  although  the  theory  holds in 

the  vector  valued  case  also.  

Engineers   can  f ind  an  introduct ion  to   the  theory of t he  Fokker-Planck 

equation i n  references 1 and 2,  which also  contain  fur ther   references.  

This  theory w i l l  not  be  developed  here,  but  the  major  results w i l l  be 

s ta ted .  

Cons ider   the   sca la r   s tochas t ic   d i f fe ren t ia l   equa t ion  

k ( t >  = f(x(t), t) + g ( t )  v ( t )  

9 



Here v ( t  ) i s  Gaussian  white  noise , with 

E{v(t)} = 0 ; E{v(t) v(s)} = 6( t - s )  (6 1 

'We assume t h a t   I g ( t ) l  > 0 f o r  all t.. We w i l l  a l s o  assume t h a t  f(x, t )  and 

g ( t )   a r e  a t  least   piecewise  continuous  functions  of t ,  t h a t  f i s  a t  l e a s t  

once d i f f e ren t i ab le   w i th   r e spec t   t o  x, and t h a t  f obeys the  following 

condi t ion :   there   ex is t  K1, K2 < m such  that  

f o r  all t and all x. 

Aside  from  the change  from  vector-valued  functions to  scalar-valued 

funct ions,   the   major   difference between equation (2)  and equation (5)  i s  

t h a t   i n  ( 5 ) ,  t h e   f u n c t i o n   g ( t >  must  be a function  of t only, and not a 

function  of x. That i s ,  the   whi te   no ise   en te rs   addi t ive ly ;  it i s  not 

mult ipl ied by any  funct ion  of   the  solut ion  of   the  different ia l   equat ion.  

Under t h i s   r e s t r i c t i o n ,   t h e  I t o  and the   S t ra tonovich   in te rpre ta t ions  

of   the   so lu t ion   of   the   d i f fe ren t ia l   equa t ion   co inc ide .  The divergence 

o d y  a r i s e s  when the  white   noise  i s  mult ipl ied by a funct ion of t he   so lu t ion  

o f  the  equation. 

I n   t h e   e a r l i e r   l i t e r a t u r e ,  e.g.  reference 1, the   s tochas t i c   d i f f e ren t i a l  

equation (5)  i s  ca l l ed  a Langevin  equation. I n   t h e  more mathematical modern 

l i t e r a t u r e  , equation (5)  i s  rewr i t ten  in a more rigorous manner. In   o rder  

to  avoid  the  mathematical  pathology  associated  with  white  noise, i t s  

integral ,   the   so-cal led Wiener o r  Brownian motion  process  w(t) i s  

introduced : 

t 
w( t )  = I, v ( t )   d t  

The process  w(t)   can be defined  independently  of  v(t) ,   merely by 

s t a t i n g   t h a t  it i s  Gaussian  and t h a t  

10 



The i n t e g r a l  on t h e   r i g h t  , 

being   an   in tegra l   wi th   respec t   to  a  Wiener 

i n t e g r a l ,  a so-ca l led   s tochas t ic   in tegra l .  

t i o n   g ( t )  i s  r e s t r i c t e d  as mentioned  above 

process,  i s  a new kind of 

However, s o  long  as  the  func- 

, i . e . ,   tha t  it i s  a non-random 

function  of t ,  then   the  I t o  and St ra tonovich   in te rpre ta t ions  of t h i s  

integral   agree.  It may be defined,  e.g. , as t h e  limit in probabi l i ty   of  

a sequence of sums of  the  form 

where 0 = to < t < t2 * . *  < tn = t . So f a r   t h e r e  i s  no problem; the  

usual  rules o f  ca l cu lus   con t inue   t o   app ly   t o   t h i s   i n t eg ra l .  
1 

When the  engineer t e l l s  the  mathematician that what  he r e a l l y  means 

by a s o l u t i o n   t o   t h e  Langevin equation ( 5 )  i s  a s o l u t i o n   t o   t h e   i n t e g r a l  

equation (lo), then  the  mathematician i s  happy,  because he can  prove 

existence and uniqueness of s o l u t i o n s   t o  (10) with  probabi l i ty  1. Further- 

more, the  mathematician1 s so lu t ion  t o  (10) t u r n s   o u t   t o  have t h e   s o r t  of 

p rope r t i e s   t ha t  one i n t u i t i v e l y   e x p e c t s   t h a t   s o l u t i o n s   t o  (5)  might  have, 

so t h e   s i t u a t i o n  i s  good. 
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Since   for   each  t ,  x ( t )  i s  a random var iab le ,  it has a probabi l i ty  

d is t r ibu t ion   assoc ia ted   wi th  it. Furthermore, t h i s   d i s t r i b u t i o n  w i l l  

be smooth  enough so t h a t  it can  be  described by a probabi l i ty   dens i ty  

funct ion,  p( 5 ,t ). Here the  meaning o f   t h i s   func t ion  i s  t h a t  

The var iab le  5 i s  merely a parameter in the   dens i ty   func t ion .  It i s  not 

the  same as the   va lue   o f   the   p rocess   x ( t ) .   In   the   dens i ty   func t ion   p(S , t ) ,  

the  two var iab les  5 and t are  independent  variables.  

It t u r n s   o u t   t o   b e  of g rea t   i n t e re s t   t o   s tudy   cond i t iona l   dens i t i e s ,  

where we condition on t h e  known value  of  the  process a t  an ea r l i e r   t ime .  

Therefore,   define  p(<,t lTl,s)  for s < t by 

The func t ion   p(5 , t l7 lys)  w i l l  be a function  of a l l  four  independent  parameters 

5 ,  7 ,  t ,  s. When t ,  7 ,  and s are   he ld   f ixed ,  it i s  a probabi l i ty   dens i ty  

function  of 5 ,  e.g.,  P(S,tlTl,s) 2 0 and 

Suppose we t r ied   condi t ion ing  on several  past  events.  Let tl < t2 <"' < tn. 
Consider  the  probabili ty 

It t u r n s   o u t   t h a t   f o r  a process   x ( t )   ob ta ined  as t h e   s o l u t i o n   t o  a s tochas t ic  

in tegra l   equa t ion  o f  the  form (lo), th i s   condi t iona l   p robabi l i ty  i s  merely 

to p(5 JtnlTn-lY tn-l) d?7* 

1 2  



Written  mathematically, what w e  are   saying is  

Any process x( t )  f o r  which equation (U) holds   for   every   in teger  n,  
for  every  choice  of tl, t2, ... , tn, provided  only  that  tl < t2 < . * *  

< tn , i s  ca l l ed  a Markov process .   Stated in words , the   def ining  property 

of a Markov process i s  tha t   t he   s ing le  most recently  observed  value  of  the 

process  contains as much information  about   the  future   evolut ion of the  

process as does  knowledge of  t he   en t i r e   pas t   h i s to ry  of the  process   up  to  

and including  the most recently  observed  value. 

< tn-l 

The condi t ional   probabi l i ty   densi ty   funct ion p(5 ,t 1 7 , s )  plays a 
fundamental  role in the  study  of  continuous Markov processes.   This  function 

is  cus tomar i ly   ca l led   the   t rans i t ion   dens i ty   for   the   p rocess .  The t r a n s i -  

t i on   dens i ty  p(5 ,t 17,s) may be  obtained by solving  the  forward  Fokker- 

Planck  equation  (also  called  the  forward Kolmogorov equation) 

with  the  boundary  conditions 



The t r a n s i t i o n   d e n s i t y  may equal ly   wel l  be  obtained  by  solving  the 

backward Fokker-Planck o r  Kolmogorov equation 

- m < T ) < + r n ,  s < t  

with  the boundary condi t ions 

Equation (15) i s  a par t ia l :   d i f fe ren t ia l   equa t ion  for p considered as 

a function  of  the  independent  variables 5 and t. The var iab les  7 )  and s 

are  merely  parameters  which  enter  through  the  boundary  conditions (16). 
On the  other  hand,  equation (17) i s  a pa r t i a l   d i f f e ren t i a l   equa t ion   fo r  p 

as a function  of  the  independent  variables ‘fl and s. Here 5 and t a r e  

merely  parameters  which  enter  through  the  boundary  conditions (18). The 

coef f ic ien t   func t ions  f and g are the  functions  defined in ( 5 )  and (6). 

From an  engineer ing  s tandpoint ,   the   s i tuat ion may be summarized by 

say ing   tha t  a complete p robab i l i s t i c   ana lys i s  of the  propert ies  of a s tochas t ic  

dynamic system  described by (5)  may be made by f ind ing   the   t rans i t ion  

density  p(s ,ti ‘ Q , s )  as a s o l u t i o n   t o  one of  the Fokker-Planck  equations 

( i f  it s a t i s f i e s  one , it necessar i ly   sa t i s f ies   the   o ther ) .   This   s ta tement  

i s  accurate,   provided one i s  ca re fu l  what  he  does in such an analysis .  The 

next   sect ions w i l l  show what it means t o  be carefu l .  

V. AN APPARENT  PARADOX 

Let us consider   the Wiener process  introduced in (7) .  The preceding 

t h e o r y   a p p l i e s   t o   t h i s   p r o c e s s  , s ince  by s e t t i n g  x(o) = 0,  f = 0 ,  g = 1, 

equation (10) becomes 



t 

= 1 dw(t) 

i.e. x ( % )   = w ( t ) .  In o r d e r   t o  make our poin t ,  it w i l l  s u f f i c e   t o   c o n s i d e r  

only  the  forward  equation (15), and to   cons ide r  i t s  so lu t ion   on ly   for   the  

spec ia l   case  of s = 0, ?l = 0 in (16). 

Denote t h i s   s o l u t i o n  by q ( 5 ,   t ) .  Thus 

where now x ( t )  i s  a Wiener process. 

It i s  wel l  known t h a t  q ( 5 ,  t ) i s  given by 

.It i s  easily v e r i f i e d   t h a t   t h i s   f u n c t i o n  obeys the  forward  equation 

and s a t i s f i e s   t h e  boundary condition 

Now suppose  the Wiener process is passed  through a memoryless nonlinear 

d e v i c e   t o  produce a new process   z ( t ) .   S ince   the   device  i s  memoryless, t he  

process z ( t )  will s t i l l  be Markov, and the   p robab i l i t y   dens i ty   fo r  it w i l l  

obey  a  FoJsker-Planck equat ion.   Specif ical ly ,   suppose  that  



Define 

By t h e   r u l e  for change  of var iab les  i n  p robab i l i t y   dens i t i e s ,  

E i the r  by making the  change  of  independent  variable 5 = ~ i n h - ~ c  in   (22)  and 

using  (26), or by d i r e c t   d i f f e r e n t i a t i o n  of (27))  one f inds   t ha t   t he  Fokker- 

Planck  equation satisfied by  p(6 ,t ) i s  

According t o   t h e   t h e o r y  i n  

corresponding t o   t h e   s t o c h a s t i c  

d z ( t )  = 2 z ( t )   d t  + [1 I 

Doob (Ref. 3 ) )  t h i s  i s  the  forward  equation 

d i f f e ren t i a l   equa t ion  

This   resembles   the  s tochast ic   different ia l   equat ion  (9)   discussed in 

the  previous  sect ion.  However, i n  regard t o  (9 ) ,  it was spec i f i ca l ly   s t a t ed  

t h a t   t h e   c o e f f i c i e n t   g ( t  ) which mult ipl ies   the  noise  had t o  be a non-random 

funct ion of t only. I n  (29) ,   the   coeff ic ient   of   the   noise ,  namely 

[1 + z ( t ) F ,  i s  a funct ion of z ( t ) .  
2 3 -  
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N o w ,  i f  w e  simply compute d z ( t )  from  (24)  using  the  chain rule of 

ordinary  calculus ,  w e  f i n d  

d z ( t )  = & sinh x d x ( t )  I x ( t >  = sinh-l Cz(t)]  

= cosh x d x ( t )  I x ( t )  = sinh-I [ z ( t ) ]  

- 1 
= c1 + sinh x] d x ( t )  I x = sinh [ z ( t ) ]  

-1 

Since in the   p resent   case   x ( t  ) = w ( t  ) , t h i s  may be rewr i t ten  

The s tochas t ic   d i f fe ren t ia l   equa t ions   (29)  and (31) d i f f e r  by the  

term z d t .  The quest ion is ,  which i s  the   co r rec t   s tochas t i c   d i f f e ren t i a l  

equation for generat ing  the  process   z( t )  from a Wiener process? 

I t o  and Doob would say  that   (29)  i s  the  correct   equat ion.   Stratonovich 

would say   t ha t  (31) i s  the  correct  equation. kt us pinpoint   the   exact  

i s sue  of disagreement by f i rs t  s t a t i n g   t h e   f a c t s  on  which  everybody agrees.  

Everybody agrees on the  following: 

1. The Wiener process i s  a well-defined  process. Its probabi l i ty  

densi ty ,   g iven  that   the   process  starts a t  zero a t  time zero, 

i s  cor rec t ly   g iven  by (21) ,  and t h i s   f u n c t i o n   s a t i s f i e s   ( 2 2 )  

and  (23). 



2. The process   z ( t )   def ined  by (24) i s  a well-defined  process. 

Its densi ty   funct ion,   def ined in (25) ,  is  cor rec t ly   g iven  by 

(27) , and t h i s   f u n c t i o n   s a t i s f i e s   ( 2 8 ) .  Thus, in p a r t i c u l a r ,  

both  Stratonovich and It0 would agree   tha t  (28) i s  the   co r rec t  

Fokker-Planck  equation  for  the  z(t)   process  defined by (24). 

3. Everybody ag rees   t ha t  if we in t eg ra t e  (31) accord ing   to   the  

r u l e s  o f  ordinary  calculus  w e  do g e t   z ( t )  = sinh .[w(t)] 

as   the   so lu t ion ,   whi le  i f  we in t eg ra t e  (31) according t o   t h e  

I t o   c a l c u l u s  we do n o t   g e t   t h i s  as the   so lu t ion .  

4. I t o  and Stratonovich would both  agree  that  if we integrate   (29)  

accord ing   to   the  rules of I t o  calculus  we do g e t   z ( t  ) = sinh [w(t )] 

as the   so lu t ion ,   whi le  i f  we in t eg ra t e  (31) according  to  ordinary 

ca lcu lus ,  w e  do n o t   g e t   t h i s  as a solut ion.  

Therefore ,   the   s i tuat ion i s  t h a t   t h e  one  unambiguous way t o  specify 

a Markov process  mathematically i s  t o   s p e c i f y  i t s  t r a n s i t i o n   d e n s i t y ,  o r  

equivalent ly ,   the  Fokker-Planck equation obeyed  by the   t r ans i t i on   dens i ty .  

The divergence  arises when one wishes to   genera te   the   spec i f ied   p rocess  

as a s o l u t i o n   t o  a s tochas t ic   d i f fe ren t ia l   equa t ion   forced  by t h e   d i f -  

f e r en t i a l   o f  a  Wiener process. The divergence  boils down t o  two 'dif ferent  

ways of assoc ia t ing   the   coef f ic ien ts  in the  Fokker-Planck  equation  with 

the   coe f f i c i en t s  in the   s tochas t i c   d i f f e ren t i a l   equa t ion ,  and respec t ive ly  

two ways o f   i n t eg ra t ing   t h i s   s tochas t i c   equa t ion .  

Each way i s  c o n s i s t e n t   w i t h i n   i t s e l f ,  as we have  seen.  Starting from 

the  process   z( t )   def ined by the  Fokker-Planck equation  (28),   the  use  of 

S t ra tonovich   ru les   assoc ia tes   the   s tochas t ic   d i f fe ren t ia l   equa t ion  (31) 
with  (28) .   Integrat ing (31) by the  Stratonovich  rules   yields  

z ( t )  = sinh Cw(t)]. 

On the   o ther   hand ,   the   use   o f   I to   ru les  w i l l  a ssoc ia te   the   s tochas t ic  

different ia l   equat ion  (29)   with  the Fokker-Planck equation  (28). However, 

integrat ing  (29)  by t h e   I t o  d e s  aga in   y i e lds   z ( t )  = sinh Cw(t)]. Further ,  
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I t o  would say   tha t   the   computa t ion   of   the   d i f fe ren t ia l   dz( t )  in (30) 
is  incor rec t ;  i f  t h i s  computation i s  done  by I t o   r u l e s   t h e n  (29) r e su l t s .  

However, Stratonovich would say t h a t  (30) i s  a pe r fec t ly   va l id  computation. 

A t  first g l a n c e ,   i t ~ m i g h t  seem academic t o  worry  about this   divergence 

between I t o  rules and Stratonovich rules. Each s e t   o f  rules is cons is ten t  

w i t h i n   i t s e l f .  If t h e  same s e t   o f  rules i s  consistently  applied  throughout 

t he  whole  computation,  both  methods y i e l d   t h e  same result. 

The mathematician  discusses Markov process by starting wi th   the  

t r ans i t i on   dens i ty   fo r   t he   p rocess .  He i s  ab le   t o   a s soc ia t e  a Fokker- 

Planck  equation in an.unambiguous way w i t h   t h i s   t r a n s i t i o n   d e n s i t y .  When 

he f i n d s   t h a t  he has two possible  ways of  modelling  the  process as the 

s o l u t i o n   t o  a s tochas t i c   d i f f e ren t i a l   equa t ion ,  he w i l l  choose the  way 

which has   the most mathematical  elegance in i ts  in t e rna l   s t ruc tu re ,  and 

which i s  capable  of  the  greatest   generalization.  Considered  from  this 

s tandpoin t ,   the   I to   ca lcu lus  i s  the  "right"  choice.  Indeed,  the  procedure 

jus t   descr ibed  i s  prec ise ly   the  one followed by Doob in h i s  book 

(reference 3). 

However, the  quest ion i s  not  so  simple  for  the  engineer.  He cannot 

resolve  the  issue on the  basis  of  mathematical  elegance  alone. The engineer 

does s ta r t  wi th   the   t rans i t ion   dens i ty .  A s  discussed i n  t h e   e a r l i e r  

sect ions,   the   engineer  starts wi th  a d i f f e ren t i a l   equa t ion  which  he has 

obtained on t h e   b a s i s  of known physical laws. He then  adds a white  noise 

forc ing   te rm  to   ge t  a s tochas t ic  model. If the   coef f ic ien t  of the  noise  

i s  i t s e l f  random, then   there   a re  two possible  ways of   in te rpre t ing   the  

equat ion ,   l ead ing   to  two d i f f e r e n t  Fokker-Planck  equations  and two 
different   processes .  The quest ion is ,  which process  does one 'k-eally" 

ge t  in the  physical  world? Which kind  of  calculus  does  nature  use? 

The answer to   t h i s   ques t ion   h inges  on  whether  white  noise  flreallyfl 

e x i s t s ,  o r  whether the  concept  of  white  noise i s  only a convenient 

approximation  which we use   i n   p l ace  of a more de t a i l ed  knowledge  of t h e  

properties  of  the  noise  process.  The t r u e   s i t u a t i o n  is  c e r t a i n l y   t h e  

l a t t e r ,   s ince   no i se   w i th  a t r u l y  f la t  power densi ty   spectrum  out   to  
infinite  frequency would c a r r y   i n f i n i t e   t o t a l  power. However, t h i s  
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then   impl ies   tha t   there  is r e d l y  no such  thing as a Markov process 

e i t h e r ,  and t h e  whole theory of the  Fokker-Planck equation  goes down 

t he   d ra in .  

Therefore,  the whole theory of  whi te   no ise ,   s tochas t ic   d i f fe ren t ia l  

equations,  Markov processes,  and the  Fokker-Planck  equation must  be 

approached  from the  s tandpoint  of  an  approximate  model ra ther   than  an 

exact model of phys i ca l   r ea l i t y .  It is ,  of course,   possible   to   use 

non-white noise in t h e  model, but now one i s  faced  with  the problem 

of  specifying  the power density  spectrum o f  the   no ise ,  which is  usua l ly  

completely unknown a t  high  frequencies,  even  though it can  be  measured 

as f l a t  a t  low frequencies.  Furthermore,  use  of a non-flat  high  frequency 

spectrum  complicates  the  computations  tremendously. 

Once one r ea l i zes   t he   k ind  of  approximation  that i s  being made, it 
tu rns   ou t   t ha t  it is  p o s s i b l e   t o   u s e   e i t h e r   t h e  It0 o r  the  Stratonovich 

r u l e s  and obtain  equal ly   accurate   resul ts ,   provided  that  one i s  ca re fu l  

in s e t t i n g  up the  mathematical model  and t h a t  one i s  aware o f  the  

subt le t ies   involved.  

The paradox  of  obtaining two d i f fe ren t   s tochas t ic   p rocesses  as 

s o l u t i o n s   t o   t h e  same s tochas t i c   d i f f e ren t i a l   equa t ion   t hus   t u rns   ou t  

t o   a r i s e  from the  pathological   nature  o f  white  noise.  This  paradox  can 

be  avoided by t reat ing  this   pathology  with  proper   respect .   In   the  fol-  

lowing  sections we w i l l  examine the   s i t ua t ion  in more d e t a i l .  

V I .  THE IT0 CALCULUS 

In  order   to   in t roduce   the  It0 c a l c u l u s ,   l e t  us begin by examining 

the  diener   process   w(t)  more careful ly .   Let  A t  be some very small, but 

not  infinitesimal,  increment  of  time.  Define 

A w ( t >  = w(t + At) - w(t>  
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For  f ixed t and A t ,  w(t  + At) and w ( t )  are both  Gaussian random var iab les ,  

so Aw(t ) is a l s o  a Gaussian random var iab le .  

L e t  q(5,  t l 7 ,  s)  be t h e   t r a n s i t i o n   d e n s i t y   f o r   . t h e  Wiener process, 

i .e. 

By the   de f in i t i on  of t he  Wiener p rocess ,   t h i s   dens i ty  i s  given by 

With somewhat of an  abuse  of  notation,  define  the  conditional 

probabi l i ty   dens i ty  

Since we are conditioning on the  f ixed  event  w(t  ) = 5 , observe  that 0 
Prob (L\S 5 Aw(t) < AS + d(A<)lw(t)  = S }  
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I n  t h e  last line of  (37) we have written p (As) t o  denote  the Aw 
uncondi t ional   probabi l i ty  density f o r  t h e  random v a r i a b l e  A w ( t  ), i . e .  

The important  point is t h a t  

i. e. , the   dis t r ibut ion  of   the  increment  Aw ( t )  i s  independent of w ( t )  , t he  

s ta te  of the  process  a t  t i m e  t. This is  not   general ly   t rue of random 

processes,  or  even of Markov processes. The Wiener process  w(t)  belongs 

t o  a s p e c i a l  class of  processes known as  processes  with  independent 

increments. 

From (37)  and (38) , we see t h a t   t h e  random va r i ab le  Aw(t) de f ined   i n  

(32) is gaussian  with mean zero and variance A t .  The f a c t   t h a t  E {(Aw) } 

i s  f i r s t   o r d e r   i n  A t  is what causes   t he   pecu l i a r i t i e s   o f   t he   I t o   s tochas t i c  

calculus. 

2 

L e t  F be any  smooth real-valued  nonlinear  function  of a r ea l   va r i ab le .  

Consider F(W(t + A t ) ) ,  where w(t)   cont inues  to   denote   the Wiener process. 

By Taylor series and  (32) , 
F(W (t + At)) = F @ ( t )  + AW (t)} 

= F (w(t)> + F' (w(t))Aw(t) + 3 F" +(ti) [Aw(t) I 2 + --- ( 4 0 )  

Using the   d i s t r ibu t ion   o f  AW ( t )  , we have 

E { (Aw) 1 = 0,  k odd k 

E { ( A w ) ~  } = 1.3.5... (k-1) (At)k'2, k even 
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- F(w(t)) = l i m  d  F(w(t + A t ) )  - F(w(t)) 
d t  A t+O A t  

From ( 4 0 )  and (41), i t  fo l lows   tha t  

E {F" (w(t)> 1 A t  + 0 (At) 1 
E [& F(w(t))] = l i m  

A t+O 

1 

A t  

= E IF''  (w(t))} 

( 4 3 )  

On the   other   hand,   i f   one computer t h e   t o t a l   d i f f e r e n t i a l  dF(w(t)) using 

the  chain  rule  of  ordinary  calculus,   one  has 

dF(w(t)) = F' (w(t)) dw ( t )  ( 4 4 )  

By passing from  an  increment Aw(t) t o  a d i f f e r e n t i a l   d w ( t ) ,  i t  follows from 

( 3 9 )  that   dw(t)  is independent  of  w(t).  Therefore, 

E {dF (vJ(t)) 1 = E IF' (w('t)> dw(t)) 

= E {F'  (w(t))) E {dw(t) 1 = 0 

s ince  E {dw(t)} = 0 by ( 4 1 ) .  Now ( 4 5 )  would imply t h a t  

i n   c o n t r a d i c t i o n   t o  ( 4 3 ) .  

The point i s  that  because of t h e   f a c t   t h a t  E {(Aw) 1 = A t ,  t he   degin i t ion  2 

of   the   der iva t ive  ( 4 2 )  no longer   l eads   to   the   usua l   ru les  of ca l cu lus .   I t o  

w a s  t h e   f i r s t   t o  show how the  rules   of   calculus   should  be  modif ied  to   handle  

t h i s  phenomenon. F i r s t  of a l l ,   i n s t ead   o f  computing the   de r iva t ive  as i n  

( 4 2 1 ,  one  should compute t h e   d i f f e r e n t i a l   d F ( t ) ,   b e c a u s e   t h e   d i f f e r e n t i a l  
dw(t)  can be rigorously  interpreted  whereas  the  derivative  can  not.  

d t  



As given i n  reference ( 4 ) ,  t h e   I t o   r u l e   f o r   t h e   s t o c h a s t i c   d i f f e r e n t i a l  

i n   t h e   p r e s e n t  case is 

dIF (w(t)) = F' (w(t)) dw(t) 4- 3 F" (w(t,)> d t  ( 4 7 )  , 
where now d  means I t o   d i f f e r e n t i a l .  Note t h a t   t h i s   r u l e  i s  now consis tent  

with Doob's treatment of   the Fokker-Planck  equation. L e t  us  apply ( 4 7 )  i n  

t he   spec ia l  case when F(w(t)) = sinh [w(t)] . 
I 

Now F' (W) = cosh W ,  F"  (W) = sinh W ,  so ( 4 7 )  says 

rewri t ten as 
2 1 / 2  dIz( t )  = z ( t )   d t  + [l + z ( t ) ]   & ( t )  2 ( 4 9 )  

which is  the  same as (29) .  Thus, t h e   I t o   r u l e  ( 4 7 )  f o r   t h e   t o t a l   d i f f e r e n t i a l  

is consis tent   with  the Fokker-Planck  equation (28) .  

S ince   t he   ru l e   fo r  computing t o t a l   d i f f e r e n t i a l s   h a s  now been changed 

from ( 4 4 )  t o  ( 4 7 ) ,   w e  must expect a corresponding  change i n   t h e   r u l e   f o r  

integrat ion.  L e t  us write ( I )  1 when an   i n t eg ra l  is to   be   unders tood   in  

the   I t o   s ense ,  and cont inue   to  write j u s t  1 for   o rd inary   in tegra ls .  

We wish  to  preserve  the  fundamental  property  of  calculus,  that  the 

in tegra l   can   be   in te rpre ted  as an  anti-derivative.  Therefore, w e  require  

t h a t  

Applying t h i s   t o  ( 4 7 )  y i e l d s  



This may be  rewrit ten as 

Now l e t  g ( x )  be any once-differentiable  function.  Define 

Then, using (52) with F replaced by G ,  
L .l 

= G(w(t)) - G(w(to)) - $l G" (w(t )) d t  
0 

I n  (54),  the   no ta t ion   g(5)  dS means compute 

an   o rd ina ry   i n t eg ra l ,   t r ea t ing  5 as a de terminis t ic  dunmy variable   of  

i n t eg ra t ion ,  and then  evaluate between t h e  random limits w(tl) and W(to). 

This ,   inc identa l ly ,  i s  e s s e n t i a l l y  what Stratonovich  has in mind in h i s  

de f in i t i on   o f   t he   s tochas t i c   i n t eg ra l .  
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Let (S ) j d e n o t e   t h e   S t r a t o n o v i c h   i n t e g r a l .  Then, in the present 

context , 

Therefore,  (54j can  be  rewritten 

which i s  a spec ia l   case  of  the  formula  given by Stratonovich in reference (5) 
for the  connection  between I t o   i n t e g r a l s  and Stratonovich  integrals .  

The I to   ca lcu lus   has  some surprising  consequences. For example, l e t  

g(w(t)) = w ( t )   i n  (56). By the   no ta t ion   g ' (w( t ) )  we mean, of  course, 

SO t h a t  in the  present  case  gl  (w(t)) = 1. Now, 

so u s i n g  (55) and (56) we obtain 

an example  which i s  a l s o  given by Doob. 
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The presence of t he  &(t, - to) t e r n  in (59) can  be made more 
p laus ib le  by the following considerations.  Let us consider 

since  the  increment  dw(t) i s  understood t o  be independent of w ( t ) .  Therefore, 

we conclude 
L 

Now r e c a l l   t h a t   t h e  Wiener process was defined  such  that  w(o)  = 0. 

Thus, by (21) w e  have t h a t  

Taking the  expected  value of both  sides o f  ( 5 9 )  now gives 

E @ I )  I’ w ( t )  dw(t)} = $E{w2(tl)} - *Ep(to)) - &(tl - to) 
0 

- 1  - Stl - *to - &(tl - to) = 0 (64), 

i n  agreement with  (62).  Thus,  the %(tl - to) can  be  viewed as a correct ion 

term  which  insures  that  (62)  holds. 



However, these   cons idera t ions   a l so  imply t ha t   fo r   t he   S t r a tonov ich  

i n t e g r a l  , 

Thus, fo r   t he   S t r a tonov ich   i n t eg ra l ,  it cannot be t rue   t ha t   dw( t )  i s  

independent  of  w(t),  for we have j u s t   s e e n   t h a t   t h i s  independence i s  what 

makes the  expected  value  of  the  Ito  integral  always  zero. 

I n   f a c t ,   t h i s  i s  prec ise ly   the   case .   S t ra tonovich   in te rpre ts   the  

d i f f e ren t i a l   dw( t )  i n  such a way t h a t  it i s  not  independent  of  w(t). 

The I t o   c a l c u l u s  i s  based on the  fact   that   the   increment  Aw(t) 

defined in (32) i s  independent  of  w(t), and has mean zero and variance A t .  

In   cont rac t ,   S t ra tonovich  works with a "Stratonovich  hcrementIt  defined 

as 

This  increment still has mean zero and variance A t ,  but it i s  independent 

of w(t ) . We w i l l  examine the  Stratonovich  calculus   in  more d e t a i l  in the  

next  section. 

This  report  i s  wr i t t en  in such a way as t o  be (we hope)  pedagogically 

palatable  to  engineers.   Consequently,  our treatment of s tochas t i c   d i f f e r -  

en t ia l   equa t ions  and s t o c h a s t i c   c a l c u l u s   d i f f e r s   d r a s t i c a l l y  from the 

rigorous  mathematical  treatment  given in references 3 and 4. Rather  than 

ca re fu l ly   s t a t ing  and proving  theorems, we a re  trying t o  convey the  basic  

ideas  involved by considering  only  special   cases and examining i l l u s t r a t i v e  

examples . 
So f a r ,  we have d iscussed   the   I to   ca lcu lus  by following  the  approach 

h i s t o r i c a l l y  used in present ing  ordinary  calculus  t o  s tudents  f o r  t h e   f i r s t  
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time. Namely, we introduced  the  der ivat ive first, as the   so r t   o f  limit 
given in (42). The i n t e g r a l  was then  introduced as an ant ider iva t ive .  

I n  the  modern, r igorous  approach  to  calculus,  which i s  usually  presented 

t o   s t u d e n t s   o n l y  after their   in tui t ion  has   been  sharpened,   the  integral  

is def ined   d i r ec t ly  from first pr inc ip les .  The Riemann i n t e g r a l  i s  

defined as a limit of Riemann sms, and the  Lebesgue i n t e g r a l  i s  defined 

by  use of measure theory.  

S imi la r ly ,  in a r igorous  approach  to   s tochast ic   calculus ,   the   I to  

i n t e g r a l  i s  defined first,  as a s tochas t ic  limit of Riemann-type sums. 

The I t o   d i f f e r e n t i a l  formula  (47) i s  then  derived as a consequence  of 

t h i s   i n t e g r a l .  

Let us ske tch   b r i e f ly   t he   de f in i t i on  of t h e   I t o   i n t e g r a l  as a limit 
of sums. Let   w(t)  be a Wiener process.   Let  x(t)  be  any random process 

having t h e   p r o p e r t i e s   t h a t ,   f o r  all t ,  x(t) and [W(T) - w(t)J  are  independent 

f o r  all T > t ,  and t h a t  

( z2(t)  d t  < m 

wi th   p robabi l i ty  one. Note t h a t ,   f o r  7; S t , e ( t )  and .[w(T) - w(t)] my be 

dependent.  Let 0 = t < tl < t2 < < tn = T. Let 
0 

Choose any sequence  of  parti t ions to, tl' * * = ,  tn such t h a t  

lim An = 0. 
I" 



The objec t  i s  t o   d e f i n e   t h e   I t o   i n t e g r a l  

Def ine  

k=l 

Note tha t   t he   i n t eg rand   z ( tk  - 1) i s  always  evaluated a t  the  beginning o f  

t h e   i n t e r v a l  [tk - 1, tk] over which the  increment  [w(tk) - ~ ( t ~ - ~ ) ]  i s  

taken.  Theref  ore , z( tk-l ) and [w (t,) - w(tk-l)] a r e  always  independent. 

Consequently, 

It is  now p o s s i b l e   t o  prove t h a t   t h e  sequence of random var iab les  I 

converges in p r o b a b i l i t y   t o  some l imi t ing  random var iab le  J. This limit 
i s  ca l led   the  It0 in teg ra l .  It has  the  property  that  E(J) = 0. 

n 

Note t h a t   t h e   c l a s s  of random processes   z ( t>  which may be used as 
integrands  here is very  broad. It i s  only   requi red   tha t   z ( t  ) be  square 

in tegrable   over   the   in te rva l  of i n t eg ra t ion  and tha t   the   p resent   va lue  

of z ( t )  i s  always  independent o f  all future  increments of w ( t ) .   I n   f a c t ,  

t he re  i s  not  even  any  reason why the   in tegra t ing   process   w( t )   has   to  be 

a Wiener process.  References 3 and 4 d i scuss   t h i s  in d e t a i l .  The point 

i s  t h a t   t h e   d e f i n i t i o n  of the   s tochas t ic   in tegra l   g iven  by I t o  i s  r e a l l y  

qui te   genera l ,  much more so  than our heuris t ic   der ivat ion  of  (56) would 

indicate .  



V I I .  TKF; STFLATONOVICH  CALCULUS 

In the  previous  sect ion we a s s e r t e d   t h a t  a derivat.,.e defined as 
a limit of t h e  form (42) i s  consis tent   with an in tegra l   def ined  as a 
limit of sums of t h e  form (70) , and we gave some examples t o  make t h i s  

asser t ion   p laus ib le .  The resu l t ing   s tochas t ic   ca lcu lus  i s  ca l led   the  

I to   ca l cu lus .  By examples  such as (48) and (59) it was i l l u s t r a t e d   t h a t  

t he   ru l e s   o f   t he   I t o   ca l cu lus   d i f f e r  from the  usual d e s  of ordinary 

calculus.  

In  reference (5) ,  Stratonovich proposed a d e f i n i t i o n  of the   s tochas t ic  

in tegra l   under   ra ther   res t r ic t ive   condi t ions  which l e a d s   t o  a s tochas t ic  

calculus whose ru l e s   a r e   t he  same as ordinary  calculus .   Basical ly ,  what 

Stratonovich  did was t o  show that  the  formula (56) could  be made rigorous. 

Thus, w i t h   t h e   I t o   i n t e g r a l  on the  lef t -hand  s ide  of  (56) already  well-  

def ined,   the   Stratonovich  integral  on the  r ight-hand  side of (56) becomes 

well-defined. 

Therefore,   Stratonovich  did  not  give a fundamental  definition of a 

new s tochas t i c   i n t eg ra l ,   bu t  on ly  defined  the new in t eg ra l   i n   t e rms  of 

the   a l ready   ex is t ing  It0 integral .   Furthermore,   the new i n t e g r a l  i s  not 

def ined   for  forms as general  as (69). It i s  only   def ined   for   the   spec ia l  

case  of ( 6 9 )  i n  which z ( t )  i s  of  the  form 

where g(x,  t )  i s  a non-random funct ion  of   the two arguments x, t. Conse- 

quen t ly ,   t he   I t o   i n t eg ra l  remains  both more fundamental  and more general  

than   the   S t ra tonovich   in tegra l .  

It i s  tempting t o  suppose t h a t  a fundamental   definit ion of the 

Stratonovich  integral   could be given,   in   anology  with (70) , by taking 

a sequence  of sms of the form 
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Unfortunately,  such a sequence of sums cannot be shown t o  converge, in 
general ,  even in such a weak sense as convergence i n  probabi l i ty .  The 

St ra tonovich   in tegra l  i s  no t   ve r sa t i l e  enough t o  be su i t ed  for many 

appl ica t ions   for   which   the   I to   in tegra l  i s  su i ted .  

The St ra tonovich   in tegra l  i s  jus t  v e r s a t i l e  enough t o  be s u i t e d   t o  

the   in tegra t ion  of s tochast ic   different ia l   equat ions.   Consider   the  fol-  

lowing  generalization  of (9) .  

dx(t) = f(x(t), t) d t  + g(x(t) ,  t) dw(t) (74) 

The functions f (x, t) and g(x,  t )  a re  assumed t o  be jointly  continuous 

i n  x and t ,  once d i f f e ren t i ab le   w i th   r e spec t   t o  x ,  and t o  s a t i s f y   t h e  

fo l lowing   condi t ion :   there   ex is t   cons tan ts  K K2 < m such  that  1' 

for a l l  t and a l l  x. 

By rewri t ing (7.4) as an  integral   equat ion,  one obtains  



The s tochas t i c   i n t eg ra l  on the   r i gh t   has  as i t s  integrand  g(x(.r;), T), 

r a the r   t han  g ( W(T ), 4 as i s  required  by (72). However , by giving a 
multi-dimensional  definition of h i s   i n t eg ra i ,   S t r a tonov ich  was a b l e   t o  

show  how the   i n t eg ra l  in (75) could  be  recast in the   des i red  form. There- 

fo re ,  it i s  poss ib l e   t o   s ay   t ha t   t he   s tochas t i c   i n t eg ra l  on the   r igh t -  

hand s ide  o f  (75) can be in te rpre ted  as a Stratonovich  integral .  That 

i s ,  S t ra tonovich   in tegra ls  of t he  form 

can be defined,  provided  dx(t)  and dw(t)  are  connected by a s tochas t ic  

d i f f e ren t i a l   equa t ion  such as ( 7 4 ) .  This is  apparent ly   the most general  

s i t u a t i o n   f o r  which the  Stratonovich  integral   can be defined. 

It i s  now poss ib le   to   g ive  an existence and uniqueness  proof  of 

so lu t ions   to   the   s tochas t ic   in tegra l   equa t ion  (75) when the  s tochast ic  

i n t e g r a l  i s  in te rpre ted  i n  the  Stratonovich  sense,   in   analogy  to   the 

type of  proof  using  Picard  i teration  that  Doob gives   for   the  case  of  

an   I t o   i n t eg ra l .  

The Stratonovich and the   I to   so lu t ions  of ( 7 5 )  w i l l  of  course be 

different ,   because o f  the  divergence  between  the two Lntegrals  indicated 

by (56). Call x ( t )  t h e   I t o   s o l u t i o n  and xs( t )   the   S t ra tonovich   so lu t ion .  

Exp l i c i t l y ,  we have 
I 
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Although y(t) and x s ( t )  are two different   processes ,   they  both 

s t i l l  tu rn   ou t   t o   be  Markov processes. Call pI(S , t l T ,  s )  t h e   t r a n s i t i o n  

dens i ty   assoc ia ted   wi th   %( t ) ,  and ps (5 , t lT , s )   t he   t r ans i t i on   dens i ty  

associated  with  x , ( t ) .  

A s  given by Doob, pI(S, t lT,s)  obeys respectively  the  forward and 

backward Kolmogorov equations 

On the  other  hand,  Stratonovich shows t h a t  ps(S  ,ti 7 ,  s )  obeys  respec- 

t ively  the  forward and  backward equations 

We saw e a r l i e r   t h a t  i f  (29) i s  in te rpre ted  in the   I t o   s ense ,   t hen   t he  

appropriate  forward Kolmogorov equation is  (28). If one now uses  the 

Stratonovich  rule   (80)   for   the  forward  equat ion,  one f i n d s   t h a t  i f  (31) 
i s  in te rpre ted  i n  the  Stratonovich  sense,  then  the  appropriate  forward 

equation i s  again  (28).   This i s  as it should  be,   s ince  the  I to   solut ion 

of  (29) and the  Stratonovich  solut ion of (31) a r e   t h e  same process,  namely 
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as we saw e a r l i e r .  

This would sugges t   tha t  it ought t o  be p o s s i b l e   t o   o b t a i n   t h e   I t o  

s o l u t i o n   % ( t )  of ( 7 6 )  a l s o  as the   so lu t ion  of some Stratonovich  equation, 

and v i ce  versa. Indeed ,   t h i s   t u rns   ou t   t o  be the  case.  I t 'was shown in 
both  references ( 5 )  and (8) t h a t   x I ( t )  a l s o  obeys 

where 

S imi l a r ly ,   t he   so lu t ion   x s ( t )  of (77) a l s o  obeys 

Therefore ,   a l though  the  I to   integral  i s  more fundamental and more 

general   than the St ra tonovich   in tegra l ,  it tu rns   ou t   t ha t  when we r e s t r i c t  
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our a t t en t ion   t o   S tochas t i c   d i f f e ren t i a l   equa t ions  o f  t h e  form (74), 
t he  two def in i t ions   o f   the   s tochas t ic   in tegra l   l ead  t o  two d i f f e r e n t ,  

but  interchangeable , theor ies .  

V I I I .  MODELING THE REAL WORLD 

We saw in the  last  sec t ion   t ha t   t he   s tochas t i c   d i f f e ren t i a l   equa t ion  

(74)  is  ambiguous. The ambiguity may be removed by w r i t i n g  the  equation 

in i n t e g r a l  form with  the  type of i n t eg ra l   de f in i t e ly   i nd ica t ed ,  as i n  

(76) and (77). 

'We  now re tu rn   t o   t he   s i t ua t ion   d i scussed  a t  the  beginning of t h i s  

report .  Suppose an engineer  has a de te rminis t ic  model of a dynamic system 

of  the  form  of  equation (1). Suppose t h a t  he  wants now t o  include  the 

e f f e c t s  of s tochast ic   forces   in   the  environment ,  and that  physical   reasoning 

suggests   that  a p laus ib le   s tochas t ic  model i s  equation ( 2 ) .  Which  way 

should  he i n t e r p r e t   t h i s   e q u a t i o n ,   I t o  or Stratonovich? Which kind of 

s tochast ic   integrat ion  does  Nature   herself  perform? 

I n  o r d e r   t o  answer th i s   ques t ion ,  it must  be kept   c lear ly  in mind 

exact ly  what i s  the  purpose of a mathematical  model.  Presumably we have 

i n  f r o n t  of  us a physical dynamic system, i . e .  a "black  box", whose out- 

put i s  a random process.  For s impl ic i ty ,  suppose t h i s  random process i s  

scalar-valued, and c a l l  it y ( t > .  

In   order   to   take  advantage of the  theory  of Markov processes, one 

wi shes   t o   ob ta in   y ( t )  by means of a s ta te-output   re la t ion  of   the form 

where x ( t )  i s  an n-dimensional  vector-valued Markov process. The value 

of n ,   t h e   s t a t i s t i c s   o f   t h e   p r o c e s s   x ( t ) ,  and the  determinis t ic   funct ion 



h a r e   t o  be  chosen i n  some su i t ab le  way so t h a t   t h e   s t a t i s t i c a l   p r o p e r t i e s  

of the  process   y( t )   obtained  f rom (86) approximate to   an  acceptable   degree 

of accuracy  the sample s ta t is t ics   of   the   observed  output   of   the   black box. 

It w i l l  f u r the r  be  convenient t o   o b t a i n   t h e  Markov process x ( t )  by 

means of a s tochas t i c   d i f f e ren t i a l   equa t ion  of t he  form (2).  Once the  

s t a t i s t i c s  of t h e  x ( t )  process  have  been  specified, we have seen in the 

previous  sections how the  funct ions f and G may be chosen so t h a t   e i t h e r  

t h e   I t o  o r  the  Stratonovich  interpretat ion may be used. 

Since  the  form  of  the  function h i n  (86) and the  coordinat izat ion of 

the   s ta te   space   a re  a t  our   disposal ,  one may be a b l e   t o  make th i s   cho ice  

in such a way t h a t   t h e  matrix G i n  ( 2 )  i s  not a funct ion of x ( t ) ,  i . e .  G 

would  be a purely  determinis t ic   funct ion of t ime .   In   t h i s   ca se ,  it i s  

possible   to   avoid  the  I toStratonovich  divergence  a l together ,  as we have 

seen. 

The point of view  being taken  here i s  t h a t   t h e  modeling  problem con- 

sists of t r y i n g   t o  make t h e   s t a t i s t i c s  o f  the  output of the  mathematical 

m m  ag ree   w i th   t he   s t a t i s t i c s  of the  physically  observable  output of a 
given  black box. There i s  no claim  that   equat ions (2) and (86) 'Ireallyl1 

por t ray  what i s  Ilactually  happening"  inside  the  box,  since  the  inside 

of the box i s  not   observable   to   us .  

This  philosophical  approach  to  the problem i s  general ly  known as the  

phenomenological  approach, i n   c o n t r a s t   t o  what  might be ca l led  an axiomatic 

approach. 

If one a d o p t s   t h i s  phenomenological  approach of working  backwards 

from the  output   with  the  only  object ive  being  to  match the  generated  out- 

put  with  the  observed  data,   then  the  choice between the  I t o  and Stratonovich 

c a l c u l i  becomes merely a matter of  personal  preference. On t h i s   l e v e l ,  

mathematicians w i l l  p r e f e r   t h e   I t o   c a l c u l u s  because  of i t s  elegance  and 

generali ty,   while  engineers w i l l  prefer  the  Stratonovich  calculus  because 

o f   t he i r   f ami l i a r i t y   w i th  i t s  ru les .  
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It seems t o   t h e   p r e s e n t   a u t h o r   t h a t   t h i s  i s  perhaps  the  best   resolu- 

t ion  of   the  controversy,   s ince it avoids  having t o  answer the  quest ion of 

whether   I tnature"   prefers   I to   integrals  o r  Stratonovich  integrals .  

Another way of   reaching  essent ia l ly   the same conclusion i s  t o   r e a l i z e  

tha t   t rue   whi te   no ise   cannot   ex is t   in   the   phys ica l   wor ld .  Any noise 

process,   regardless  of how f l a t  i t s  power density  spectrum  appears a t  
low frequencies,  must  have a spectrum  which  eventually  drops  off t o  zero 

a t  s u f f i c i e n t l y   h i g h   f r e q u e n c i e s ,   i n   o r d e r   f o r   t h e   t o t a l  power car r ied  

by the  process  to  be  f inite.   Physically,   the  dropping  off  of  the  spectrum 

may occur  because  of quantum mechanical  effects i f  f o r  no other  reason. 

White noise i s  reminiscent   of   the   "ul t raviolet   catastrophe" which  appeared 

when black-body r ad ia t ion  was t r e a t e d  by c lass ica l   phys ics .  

Consequently, as pointed  out  previously,  the  concepts  of  the Wiener 

process and of a Markov process  are  mathematical   idealizations which  can 

only  approximate  physical  reality. 

Suppose we have a sequence  of  continuous-time  stochastic  processes, 

of f i n i t e   t o t a l  power, which become b e t t e r  and better  approximations of 

white  noise as one passes   t o   t he  limit. In   re fe rences  (7)  and (8), the  

point i s  made t h a t   t h e   I t o  and St ra tonovich   in tegra ls  behave dilfferently 

under  passage t o   t h e  limit. Our point  here i s  t h a t   t h i s  i s  no cause f o r  

concern,  provided  that one understands what i s  happening  and  views it 
appropriately,   because  Nature  herself   never  passes  to  the limit. 

For example, i f  one wishes to   s imulate   equat ion (2) on a d i g i t a l  

computer, s ince   t he   d ig i t a l  computer operates   necessar i ly  in d i s c r e t e  

t ime,   the  s imulat ion  output  w i l l  be a discrete-time  approximation t o  

the  desired  continuous-time  process. It i s  known how t o  program the  

computer s o  t h a t  i t s  output w i l l  approximate e i t h e r   t h e   I t o   s o l u t i o n  of 

(2) o r  the  Stratonovich  solut ion  of  (2) t o  any  reasonable  accuracy. 



The  same remarks  apply t o  analog  simulation. Now, the  analog 

computer operates in continuous  time,  but  since it must necessar i ly  

employ a physical  noise  generator,  the  spectrum  of  the  noise  cannot  be 

truly  white.   This i s  in cont ras t  t o  t h e   d i g i t a l  computer,  where it i s  

poss ib le   to   ob ta in   t rue   d i scre te - t ime  whi te   no ise .   Never the less ,  

Professor T. Kai la th  o f  Stanford mentioned in a r ecen t   t a lk   ( r e fe rence  9)  
a way of  r igging  the  analog computer  so t h a t  it w i l l  approximate e i t h e r  

I t o   i n t e g r a t i o n  or Stratonovich  integrat ion.  

The above  remarks s t i l l  have not  answered the  quest ion  of  what  an 

engineer  should do  when he already  has a de te rminis t ic  model of  a physical 

system, and he  wants to   conver t  it t o  a s tochas t ic  model. The s a f e s t  

answer i s  t h a t  he should  throw away the   de te rminis t ic  model, and remodel 

the  whole problem, wi th   the   ob jec t ive   be ing   to   ge t   the   s ta t i s t ics  of the  

output of  a Monte Carlo  computer  simulation t o   a g r e e   w i t h   t h e   s t a t i s t i c s  

of the  observed  data  from  the  physical  system. Any e f f o r t   l e s s   t h a n   t h i s  

i s  an  attempt t o  f i n d  a shor tcu t ,  and may y i e l d  an incor rec t  model. 

A s  an example of the  kind of s i t u a t i o n   t h a t  may occur i n  modeling, 

consider  the  planar  motion of a p a r t i c l e  of  u n i t  mass, sub jec t   t o  no 
de te rminis t ic   forces .  

In   iner t ia l ly   f ixed   Car tes ian   coord ina tes ,   the  dynamic equations of 

motion  (analogous to   equat ion  (1)) are  

$(t) = 0 

Suppose we introduce  f l ight   path  coordi i la tes  and wr i t e  v = V cos B ,  
v = V sin p. The flight  path  equations  of  motion  are 

X 

Y 

ir = o  
VP = 0 
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If one integrates   both  (87)  and (88), starting from corresponding 

in i t ia l  condi t ions,   both (87) and (88) y i e l d   t h e  same s t r a i g h t   l i n e  for 

a t r a j ec to ry .  

Now consider making the  jump from equation (1) to  equat ion (2). 

L e t  nx( t )  and n ( t )  be  independent  Gaussian  white  noises,  each of un i ty  

power density.  Equation  (87) becomes 
Y 

Gy(t) = n Y ( t )  

I n   o r d e r   t o  

Wiener processes 

write  these  equations in I t o  form, int roduce  the two 

The I t o  form of (89) i s  

dvx(t)  = dwx(t) 

dv ( t )  = dw (t) 
Y Y 

and of course  the  veloci ty   vector  of  t he   pa r t i c l e  i s  a two dimensional 

Wiener process. 



The de f in ing   r e l a t ions   fo r   t he   f l i gh t   pa th   coord ina te s  may be wr i t t en  

? ( t )  = v,2(t) + v ( t )  
2 
Y 

If one  computes t o t a l   t i m e   d i f f e r e n t i a l s   a c c o r d i n g   t o   t h e  d e s  of  ordinary 

calcu1us, one obtains  

V V 
d V  = dvx + dv = cos f3 dvx + s i n  B dv X 

V Y  Y 

1 " s m +  dv 
V dVX V Y 

V 

dB = - dVx + 2 d V  
X - 

v y  

By (91) and ( 9 3 ) ,  therefore,   the  Stratonovich  form of the   s tochas t ic  

equation  of  motion i n  f l ight   path  coordinates  i s  

Now suppose t h a t  one  computes t h e   t o t a l   t i m e   d i f f e r e n t i a l  of  (92) 

according t o   t h e   r u l e s  of t he   I t o   s tochas t i c   ca l cu lus ,  o r  a l t e r n a t i v e l y ,  

one computes the   I to   cor rec t ion   te rm  for   (94)   accord ing   to   the   ru le   g iven  

in   r e f e rence  8. E i the r  way, the   I to   d i f fe ren t ia l   equa t ion   cor responding  

t o  (9.4) is 



Thus, t he  dB equation i s  the  same in bo th   I t o  and Stratonovich  forms, 

but  the dV equa t ion   d i f f e r s  by a term 7 d t .  1 

Let p be t h e   t r a n s i t i o n   d e n s i t y   f o r   t h e  ( V , B )  process. The forward 

pa r t i a l   d i f f e ren t i a l   equa t ion  obeyed by t h i s   d e n s i t y  can be wr i t t en  down 

from (95) using  the  rule   given by Doob, or it can be wr i t ten  down from 

(94) using  the  rule   given by Stratonovich.   Ei ther  way, one f i n d s   t h a t   t h e  

equation i s  

Equation (96) i s  the  equation obeyed  by the   t r ans i t i on   dens i ty  of a 

two dimensional Wiener process  expressed in polar   coordinates ,  as can be 

ve r i f i ed  by s ta r t ing   wi th   the   d i f fus ion   equat ion  in rectangular  coordinates 

and apply ing   the   ru les   for  change o f  var iab les  in probabi l i ty   dens i t ies .  

Summarizing  what we have so f a r ,  the   s tochas t ic   d i f fe ren t ia l   equa t ion  

of  motion of a p a r t i c l e  of unit mass whose ve loc i ty   vec to r  i s  a planar 

Wiener process   are   given in Cartesian  coordinates by (91) , in Stratonovich 

form in f l igh t   pa th   coord ina tes  by (94), and in I t o  form in f l i g h t   p a t h  

coordinates by (95). In  Car tes ian   coord ina tes ,   the   I to  and Stratonovich 

forms of the  equations  coincide; in f l igh t   pa th   coord ina tes   they  do not 

coincide. The choice  of which  one t o  use i s  e n t i r e l y  a matter  of  personal 

preference,  because (91) , (94) , and (95) are   merely  three  different ,   but  

equivalent,  ways of  describing  exactly  the same process. 



I n  (89) ,  it was i m p l i c i t l y  assumed t h a t   n x ( t )  and  n ( t )  are 

independent  of  v,(t)  and v ( t  ) , or s t a t ed  more r igorously,  in (91) the  

increments  dvx(t) and  dv ( t )  are independent  of  vx(t) and v ( t ) .  Physi- 

c a l l y ,  we have a whi te   no ise   force   f ie ld  which i s  f ixed  in i n e r t i a l  

coordinates,  through which t h e   p a r t i c l e  moves. When t h e   s i t u a t i o n  i s  

viewed in f l ight   path  coordinates ,   the   force  on  the  par t ic le   appears   to  

be correlated  with  the  f l ight   path  angle  B ( t  ) . 

Y 

Y 

Y Y 

Since  the  Stratonovich  equation (94)  can  be  manipulated  according 

t o   t h e  rules of  ordinary  calculus,  l e t  us   re- introduce  the  white   noise  

forces  n  and  n  and rewri te  (94)  in engineering  fashion as 
X Y 

Both  components o f   t h i s   vec to r  now have the  physical  dimensions  of  force. 

Let nI I and n l  respec t ive ly  be the   fo rces   pa ra l l e l  and perpendicular   to  

the   f l igh t   pa th .  Thus 

By def in i t ion   o f  n  and  n 
X Y'  
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Now consider 

(100). 



However, the  6-function i s  zero  except when t = z, and when t = z the  

matrix i n  t h e  las t  l ine  ih (102) becomes the   i den t i ty .  Thus, it appears 

t h a t  

and consequently 
. 

= 6 ( t  - d[ 
Thus, the  noise  force  vector  ]apparently  has  the same mean and 

covariance as white  noise.  Combining (97) and (98 ) ,  one may w r i t e  
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A t  first glance,  (105) appears t o  be equiva len t   to  what  one  would 

obta in  by making (88)   s tochas t ic   d i rec t ly ,  by put t ing a white   noise   force 

vec tor  on the  right-hand  side  of  (88).  Let us explore   th i s   fur ther .  

Let q ( t )  and n2 ( t )  be two independent  Gaussian  white  noises,  each  of 

un i ty  power dens i ty .  Then 

Now consider   the  s tochast ic   different ia l   equat ion 

The question i s ,  i s  the  process  generated by (108)   different  from the  

process  generated by (105)? A t  f i rs t  glance,  comparing (101) t o  (106) 
and (10.4) t o  (107), one i s  tempted t o  conclude t h a t  (105) and (108) 

generate   the same process .   In   fac t ,   the  two processes   a re   qu i te   d i f fe ren t .  

Introduce  the two Wiener processes 



The It0 in te rp re t a t ion   o f  (108) is  

The forward Kolmogorov equation  corresponding t o  (lll) i s  

2 2 
a_E = g 3 2 + 1 - a s  a t  av2 2v2 ag2  (112) . 

The  two I to   equa t ions  ( 9 5 )  and (1U) a re   c l ea r ly   d i f f e ren t .   Fu r the r ,  

the  Kolmogorov equations ( 9 6 )  and (112) do not have the  same so lu t ion ,  

i . e .   the   t rans i t ion   dens i ty   for   the   p rocess   descr ibed  by ( 9 5 )  i s  d i f f e ren t  

from the   t rans i t ion   dens i ty   for   the   p rocess   descr ibed  by (111). If two 

processes have d i f f e ren t   t r ans i t i on   dens i t i e s ,   t hey   a r e   d i f f e ren t   p rocesses .  

khy, then,  do (105) and (108) appear  to be so  s imi la r?  The s a f e s t  

answer i s  that   the   manipulat ions i n  (101) through (104) are   not   oniy non- 

rigorous,  but  they  are  probably  meaningless.  Another  answer i s  contained 

in the   fo l lowing   p laus ib i l i ty  argument  based on the  V equation  alone. 

For   the  solut ion V(  t ) t o  (105) we have in mind exac t ly   the  same random 

process as the V ( t )  component of   the   I to   so lu t ion   of  ( 9 5 ) .  Since   t h i s  i s  

the  magnitude  of the   ve loc i ty   a long   the   f l igh t   pa th ,  it can  never be negative. 

I n   f a c t ,  one can  view the  - d t   I t o   c o r r e c t i o n   t e r m  in (95) as being  the 

force  which  keeps V ( t )  always  non-negative,  since  the  expected  value  of  the 

second  term in ( 9 5 )  i s  zero.  Thus, n in (105) must somehow be cor re la ted  

with V .  

V ( t )  

I I  
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On the   o the r  hand, for the   so lu t ion   V( t )  of (108) we have in mind 

exac t ly   the  same random process as the   V( t )  component o f   t he   I t o   so lu t ion  

of (Ul). But t h i s   c a n  be w r i t t e n   e x p l i c i t l y  as 

Since w ( t  ) has a Gaussian  dis t r ibut ion,   there  i s  nothing  to  prevent  V(t  ) 
here from being  negative a t  ce r t a in   t imes .   In   f ac t ,  as soon as one r ea l i zes  

t h i s ,  one r ea l i zes   t ha t   fo r   t h i s   r ea son   bo th  (108) and (lll) are   phys ica l ly  

meaningless. 

1 

The main purpose  of t h i s  example was t o   i l l u s t r a t e   t h e   k i n d  of paradox 

one can  create   for   oneself  by t r y i n g   t o  make d i rec t   ca lcu la t ions   involv ing  

white  noise.   In  any  case  of  doubt  in a modeling  problem, the   sa fe   th ing  

t o  do i s  t o   l o o k  a t  bo th   t he   I t o  and the  Stratonovich forms  of the  equat ions,  

and make sure  they  both have a meaningful  interpretation. 

The ul t imate   object ive of s e t t i n g  up a mathematical model i s  t o  ge t  

the  predicted  output  of  the model t o  be an acceptable  approximation  to  the 

actually  observed  output  of  the  physical  system one i s  t r y i n g   t o  model. 

This i s  r e a l l y   t h e  on ly  c r i t e r i o n  by which one can  judge  the  correctness 

of a model. 

IX. CONCLUSION 

I n   t h i s   r e p o r t ,   t h e  problem of modeling s tochast ic   nonl inear  dynamic 

systems  has  been  discussed. The var ious  mathematical   p i t fa l ls  and para- 

doxes t h a t   e x i s t  were i l l u s t r a t e d  by  examples. It was a s s e r t e d   t h a t ,  once 

the  engineer  understands  the  mathematics, he  should  adopt a phenomenological 

approach for   applying it t o  real-world  problems. 
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